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Some Polygonal Sum Labeling of Bistar 
1.Dr.K.Amuthavalli, 2. S.Dineshkumar,  

 

ABSTRACT- A (p, q) graph  G is said to admit a polygonal sum labeling if its vertices can be labeled by non -negative integers such that the induced 
edge labels obtained by  the sum of  the labels of end  vertices  are  the  first  q  polygonal  numbers.  A graph G which admits a polygonal                   
sum labeling is called a polygonal sum graph.  In this paper we have proved that the  Bistar (Bn,n) admit Pentagonal, Hexagonal, Heptagonal, Octagonal, 
Nonagonal and Decagonal Sum Labeling.  
 
Keywords:      Polygonal sum labeling and polygonal sum graph. 

      ——————————      —————————— 
1. INTRODUCTION 
     All graphs in this paper are finite, simple and undirected. 
Terms not defined here are used in the sense of Harary [2]. 
A graph labeling is an assignment of integers to the vertices 
or edges or both subjects to certain conditions. If the 
domain of the mapping is the set of vertices (or edges) then 
the labeling is called a vertex labeling (or an edge labeling). 
Graph labeling was first introduced in the late 1960’s. 
Many studies in graph labeling refer to Rosa’s research in 
1967 [5]. In the recent years, dozens of graph labeling 
techniques have been studied in over 1500 papers [3]. 
Triangular sum labeling was discussed in [6]. In [4] some 
polygonal sum labeling of paths were discussed. In this 
paper we have proved that the graph Bn, n admit Pentagonal, 
Hexagonal, Heptagonal, Octagonal, Nonagonal and 
Decagonal sum labeling. 
 
2. DEFINITIONS 
 
2.1 Definition  
     Polygonal numbers are just the number of vertices 
formed by a certain polygon. The first number in any group 
of polygonal numbers is always one or a point. The second 
number is equal to the number of vertices of the polygon. 
The third number is made by extending two of the sides of 
the polygon from the second polygonal number, completing 
the larger polygon and placing vertices and other points 
wherever necessary. The third polygonal number is found 
by adding all the vertices and points in the resulting. 
 
2.2 Definition   
     Pentagonal numbers are numbers that create a pentagon. 
In other words 1, 5, 12, 22, 35, 51, 70, 92, 117, 145 .   .    . 
are pentagonal numbers. 
 
    The nth pentagonal number is denoted by An, 

then ( )3 1
2n

n n
A

−
= . 

____________________________________________ 
 
 
 
 
 
 
 
2.3 Definition  

     A pentagonal sum labeling of a graph G is one to one 
function f: V(G)→ N  that induces a bijection f+ : E(G) → 
{A1, A2, . . . , Aq} of the edges of G defined by f+(uv) = 
f(u) + f(v) for every e = uv є E(G). The graph which admits 
such labeling is called a pentagonal sum graph. 
2.4 Definition   
   Hexagonal numbers are numbers that create a hexagon. In 
other words 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
276, . . . are hexagonal numbers. 
 
   The nth hexagonal number is denoted by Bn, then 

( )2 1nB n n= −  . 
 
2.5 Definition  
  A hexagonal sum labeling of a graph G is a one-to-one 
function f : V(G) → N that induces a bijection f+ : E(G) → 
{B1, B2, . . . .    Bq} of the edges of G defined by f+(uv) = 
f(u) + f(v) for every e= uv є E(G). The graph which admits 
such labeling is called a hexagonal sum graph. 
 
2.6 Definition 
   Heptagonal numbers are numbers that create a heptagon. 
In other words  1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 
342, 403, 469, 540, 616, 697,   .   .   . are heptagonal 
numbers. 
 

The nth heptagonal number is denoted by Cn, 

then ( )5 3
2n

n n
C

−
= . 

2.7 Definition  
     A Heptagonal sum labeling of a graph G is a one-to-one 
function f : V(G) → N that induces a bijection f+ : E(G) → 
{C1, C2, . . . , Cq} of the edges of G defined by  f+(uv) = 
f(u) + f(v) for every e= uv є E(G). The graph which admits 
such labeling is called a heptagonal sum graph. 
 
2.8 Definition   
    Octagonal numbers are numbers that create an octagon. 
In other words 1, 8, 21, 40, 65, 96, 
133,176,225,280,341,408,481,560, 645, 736, 833, 936, 
1045, 1160, 1281, 1408, 1541,   .  . . are octagonal numbers. 
 

The nth octagonal number is denoted by Dn, then 
( )3 2 .nD n n= −   

2.9 Definition  
    An octagonal sum labeling of a graph G is a one-to-one 
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function f : V(G) → N that induces a bijection f+ : E(G) → 
{D1, D2, . . . , Dq} of the edges of G defined by  f+(uv) = 
f(u) + f(v) for every e= uv є E(G). The graph which admits 
such labeling is called an octagonal sum graph. 
 
2.10 Definition 
    Nonagonal numbers are numbers that create a nonagon. 
In other words: 1, 9, 24,46, 75, 111, 154, 204, 261, 325, 
396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 
1639, 1794,1956, 2125, 2301, 2484, 2674, 2871, 3075,  .  .   
. are nonagonal numbers. 

The nth nonagonal number is denoted by En, then 
( )7 5

2n

n n
E

−
=  

2.11 Definition   
   A nonagonal sum labeling of a graph G is a one-to-one 
function f : V(G) → N that induces a bijection f+ : E(G) → 
{E1, E2,. , Eq} of the edges of G defined by   f+(uv) = f(u) + 
f(v) for every e= uv є E(G). The graph which admits such 
labeling is called a nonagonal sum graph. 
 
2.12 Definition  
   Decagonal numbers are numbers that create a decagon. In 
other words:1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 
540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 
1870, 2047, 2232, 2425, 2626, 2835, . .   . are decagonal 
numbers. 

The nth decagonal number is denoted by Fn,    then 
( )4 3 .nF n n= −   

 
2.13 Definition 
 A decagonal sum labeling of a graph G is a one-to-one 
function f : V(G) → N that induces a bijection f+ : E(G) → 
{F1, F2, . . . , Fq} of the edges of G defined by f+(uv) = f(u) 
+ f(v) for every e= uv є E(G). The graph which admits such 
labeling is called a decagonal sum graph. 
 
 
 
3. MAIN RESULTS  
   Here we have proved that the graph Bn,n admit 
Pentagonal, Hexagonal, Heptagonal, Octagonal, Nonagonal 
and Decagonal Sum Labeling. 

 
3.1 Theorem  
The graph Bn, n is a pentagonal sum graph for 2≥n .  
Proof: 
Let ( ) { } { } { } { }, , 1 , 1n n i iV B u i n v i n u v= ≤ ≤ ∪ ≤ ≤ ∪ ∪  

   ( ) { }, , 1 2 1n n iE B e i n= ≤ ≤ +    (See Fig.1) 

      

                Fig.1: Ordinary labeling of  Bn, n 
 
First we label the vertices of  Bn, n as follows: 
 Define f: V (Bn, n) →N by 
 

    ( )( )

( )

( ) 0,
(3 1)( ) , 1

2
1 3 1

( ) ,
2

3 ( 1)( ) 3 4 , 1
2

i

i

f u
i if u i n

n n
f v

i if v n i i n

=
−

= ≤ ≤

+ +
=

−
= + + ≤ ≤

 

 
Then the induced edge labels are, 

        (3 1)( ) , 1 2 1,
2i

i if e i n−
= ≤ ≤ +  

Therefore,  

( )( ) { }, 1, 5, 12, 22, 35, 51, 70, 92, 117,...n nf E B+ =  

Therefore, f is a pentagonal sum labeling and hence Bn, n is 
a pentagonal sum graph. 
 
Pentagonal sum labeling of B7, 7 is shown in Fig. 2 

 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
 
 
 
                   Fig.2: Pentagonal sum labeling of B7, 7 
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3.2 Theorem  
The graph Bn, n is a hexagonal sum graph for 2≥n .  
Proof: 
Let ( ) { } { } { } { }, , 1 , 1n n i iV B u i n v i n u v= ≤ ≤ ∪ ≤ ≤ ∪ ∪     

( ) { }, , 1 2 1n n iE B e i n= ≤ ≤ +   (See Fig.1) 
 
First we label the vertices of Bn, n as follows: 
Define f: V (Bn, n) →N by 
 

                  ( )( )
( )

( ) 0,
( ) (2 1), 1
( ) 1 2 1 ,

( ) 4 9 4, 1

i

i

f u
f u i i i n
f v n n

f v n i i n

=
= − ≤ ≤

= + +

= + − ≤ ≤

 

 
Then the induced edge labels are, 
                
        ( ) (2 1), 1 2 1,if e i i i n= − ≤ ≤ +  
Therefore, 

( )( ) { }, 1, 6, 15, 28, 45, 66, 91, 120,...n nf E B+ =  

 
Therefore f is a hexagonal sum labeling and  hence Bn, n is a 

hexagonal sum graph. 
 
    Hexagonal labeling of B4,4 is shown in Fig.3 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
      Fig.3: Hexagonal labeling of B4,4 
 
 
3.3 Theorem  
The graph Bn, n is a heptagonal sum graph for 2≥n . 
Proof: 
 
Let ( ) { } { } { } { }, , 1 , 1n n i iV B u i n v i n u v= ≤ ≤ ∪ ≤ ≤ ∪ ∪  

    ( ) { }, , 1 2 1n n iE B e i n= ≤ ≤ +   (See Fig.1) 
 

First we label the vertices of Bn , n as follows: 
 

Define f: V (Bn, n) →N 
                                     

( )( )

( )

( ) 0,
(5 3)( ) , 1

2
1 5 2

( ) ,
2

5 ( 1)( ) 5 6 , 1
2

i

i

f u
i if u i n

n n
f v

i if v n i i n

=
−

= ≤ ≤

+ +
=

−
= + + ≤ ≤

 

 
Then the induced edge labels are, 
 

    (3 1)( ) , 1 2 1,
2i

i if e i n−
= ≤ ≤ +  

Therefore,  
 

( )( ) { }, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235,...n nf E B+ =

 
Therefore, f is a heptagonal sum labeling and  hence Bn, n is 

a heptagonal sum graph. 
 
 
Heptagonal labeling of B10, 10 is shown in Fig.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Fig.4: Heptagonal labeling of B10,10 
 
 
3.4 Theorem  
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The graph Bn, n is a octagonal sum graph for 2≥n . 
Proof: 
Let ( ) { } { } { } { }, , 1 , 1n n i iV B u i n v i n u v= ≤ ≤ ∪ ≤ ≤ ∪ ∪

( ) { }, , 1 2 1n n iE B e i n= ≤ ≤ +   (See Figure 1) 
 
First we label the vertices of Bn,n as follows: 
 
 Define f: V (Bn, n) →N by 
 

        ( )( )
( )

( ) 0,
( ) (3 2),1
( ) 1 3 1 ,

( ) 6 7 3 ( 1), 1

i

i

f u
f u i i i n
f v n n

f v n i i i i n

=
= − ≤ ≤

= + +

= + + − ≤ ≤

 

 
Then the induced edge labels are, 
 
          ( ) (3 2), 1 2 1,if e i i i n= − ≤ ≤ +  
 
Therefore, 

( )( ) { }, 1, 8, 21, 40, 65, 96, 133, 176,...n nf E B+ =  

 Therefore, f is a octagonal sum labeling and  hence Bn, n is 
a octagonal sum graph. 

 
             Octagonal labeling of B5,5 is shown in Fig.5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
      Fig.5: Octagonal labeling of B5,5 

 
 
3.5 Theorem  
            
The graph Bn, n is a nanogonal sum graph for 2≥n . 
Proof: 
 
Let ( ) { } { } { } { }, , 1 , 1n n i iV B u i n v i n u v= ≤ ≤ ∪ ≤ ≤ ∪ ∪   

   ( ) { }, , 1 2 1n n iE B e i n= ≤ ≤ +    (See Figure 1) 

 
First we label the vertices of Bn,n as follows: 
 
 Define f: V (Bn, n) →N by 

                          

                      ( )( )

( )

( ) 0,
(7 5)( ) , 1

2
1 7 2

( ) ,
2

7 ( 1)( ) 7 8 , 1
2

i

i

f u
i if u i n

n n
f v

i if v n i i n

=
−

= ≤ ≤

+ +
=

−
= + + ≤ ≤

 

 
Then the induced edge labels are, 
 

                  
( )7 5

( ) , 1 2 1,
2i

i i
f e i n

−
= ≤ ≤ +  

 
Therefore,  
 

( )( ) { }, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396,...n nf E B+ =

 
Therefore, f is a nanogonal sum labeling and  hence Bn, n  is 

a nanogonal sum graph. 
 
   Nanogonal labeling of B11,11 is shown in Fig.6 
 

                             
                    Fig.6: Nanogonal labeling of B11,11 

 

3.6 Theorem   
The graph Bn, n is a Decagonal sum graph for 2≥n .  
 
Proof: 
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 Let ( ) { } { } { } { }, , 1 , 1n n i iV B u i n v i n u v= ≤ ≤ ∪ ≤ ≤ ∪ ∪  

   ( ) { }, , 1 2 1n n iE B e i n= ≤ ≤ +    (See Figure 1) 
 
First we label the vertices of Bn, n as follows: 
 
 Define f : V (Bn, n) →N by 

                         ( )( )
( )

( ) 0,
( ) (4 3), 1
( ) 1 4 1 ,

( ) 8 9 4 ( 1), 1

i

i

f u
f u i i i n
f v n n

f v n i i i i n

=
= − ≤ ≤

= + +

= + + − ≤ ≤

 

Then the induced edge labels are, 
      
 ( ) (4 3), 1 2 1,if e i i i n= − ≤ ≤ +  
 
Therefore, 

( )( ) { }, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370,...n nf E B+ =

 
Therefore, f is a decagonal sum labeling and  hence Bn, n is a 

decagonal sum graph. 
 

Decagonal labeling of B8,8 is shown in Fig.7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
 
 
                        
                    Fig.7: Decagonal labeling of B8, 8 

 

 

 
Conclusion 
 
      The polygonal sum can be verified for many other 
graphs. Also some more polygonal sum labeling can be 
investigated. 
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